Contenidos

Tipos de espectrometría


ESPECTROMETRÍA DE ABSORCIÓN


La espectrometría de absorción es una técnica en la cual la energía de un haz de luz se mide antes y después de la interacción con una muestra. Cuando se realiza con láser de diodo ajustable, se la conoce como espectroscopia de absorción con láser de diodo ajustable. También se combina a menudo con una técnica de modulación, como la espectrometría de modulación de longitud de onda, y de vez en cuando con la espectrometría de modulación de frecuencia a fin de reducir el ruido en el sistema.

ESPECTROMETRÍA DE FLUORESCENCIA


La espectrometría de fluorescencia usa fotones de energía más elevada para excitar una muestra, que emitirá entonces fotones de inferior energía.

Esta técnica se ha hecho popular en aplicaciones bioquímicas y médicas, y puede ser usada con microscopía confocal, transferencia de energía entre partículas fluorescentes, y visualización de la vida media de fluorescencia.

ESPECTROMETRÍA DE RAYOS X


Cuando los rayos X con suficiente frecuencia (energía) interaccionan con una sustancia, los electrones de las capas interiores del átomo se excitan a orbitales vacíos externos, o bien son eliminados completamente, ionizándose el átomo. El "agujero" de la capa interior se llena entonces con electrones de los orbitales externos. La energía disponible en este proceso de excitación se emite como radiación (fluorescencia) o quitará otros electrones menos enlazados del átomo (efecto Auger). La absorción o frecuencias de emisión (energías) son características de cada átomo específico. Además, para un átomo específico se producen pequeñas variaciones de frecuencia (energía) que son características del enlace químico. Con un aparato apropiado pueden medirse estas frecuencias de rayos X características o energías de electrones Auger. La absorción de rayos X y la espectroscopia de emisión se usan en química y ciencias de los materiales para determinar la composición elemental y el enlace químico.

La cristalografía de rayos X es un proceso de dispersión. Los materiales cristalinos dispersan rayos X en ángulos bien definidos. Si la longitud de onda de los rayos X incidentes es conocida, se pueden calcular las distancias entre planos de átomos dentro del cristal. Las intensidades de los rayos X dispersados dan información sobre las posiciones atómicas y permiten calcular la organización de los átomos dentro de la estructura cristalina.

ESPECTROMETRÍA DE LLAMA




Las muestras de solución líquidas son aspiradas en un quemador o una combinación de nebulizador/quemador, desolvatadas, atomizadas, y a veces excitadas a un estado electrónico de energía más alta. El uso de una llama durante el análisis requiere combustible y oxidante, típicamente en forma de gases. Los gases combustibles comunes que se usan son el acetileno (etino) o el hidrógeno. Los gases de oxidante suelen ser el oxígeno, el aire, o el óxido nitroso. Estos métodos son a menudo capaces de analizar elementos metálicos en partes por millón, billones, o posiblemente rangos más bajos de concentración. Son necesarios detectores de luz para detectar la luz con información que viene de la llama.

* Espectrometría de emisión atómica. Este método usa la excitación de la llama; los átomos son excitados por el calor de la llama para emitir luz. Este método suele usar un quemador de consumo total con una salida de incineración redonda. Se utiliza una llama de temperatura más alta que la usada en la espectrometría de absorción atómica para producir la excitación de átomos de analito. Ya que los átomos de analito están excitados por el calor de la llama, no es necesaria ninguna lámpara elemental especial. Puede usarse un policromador de alta resolución para producir una intensidad de emisión contra el espectro de longitud de onda por encima de un rango de longitudes de onda que muestran líneas de excitación de elementos múltiples. O bien puede usarse un monocromador en una longitud de onda determinada para concentrarse en el análisis de un solo elemento en una cierta línea de emisión. La espectrometría de emisión de plasma es una versión más moderna de este método.

* Espectrometría de absorción atómica (a menudo llamada AA). Este método usa un nebulizador pre-quemador (o cámara de nebulización) para crear una niebla de la muestra, y un quemador en forma de ranura que da una llama de longitud de ruta más larga. La temperatura de la llama es lo bastante baja como para no excitar los átomos de la muestra de su estado basal. El nebulizador y la llama se usan para desolvatar y atomizar la muestra, pero la excitación de los átomos de analito se realiza mediante lámparas que brillan a través de la llama en varias longitudes de onda para cada tipo de analito. En la absorción atómica, la cantidad de luz absorbida después de pasar por la llama determina la cantidad de analito en la muestra. Suele usarse un horno de grafito para calentar, desolvatar y atomizar la muestra con el fin de obtener una mayor sensibilidad. El método del horno de grafito también puede analizar algún sólido o muestras mezcladas. A causa de su buena sensibilidad y selectividad, es un método que todavía se usa para el análisis de ciertos microelementos en muestras acuosas (y otros líquidos).

* Espectrometría de fluorescencia atómica. Este método usa un quemador con una salida de incineración redonda. La llama se usa para solvatar y atomizar la muestra, y una lámpara emite luz a una longitud de onda específica en la llama para excitar los átomos de analito. Los átomos de ciertos elementos pueden entonces fluorescer, emitiendo luz en diferentes direcciones. La intensidad de esta luz fluorescente sirve para cuantificar la cantidad del elemento analizado en la muestra. También puede usarse un horno de grafito para la espectrometría de fluorescencia atómica. Este método no es tan común como el de absorción atómica o el de emisión de plasma.

ESPECTROMETRÍA DE EMISIÓN DE PLASMA


Es similar a la emisión atómica por llama, y la ha sustituido en gran parte.

* Espectrometría de plasma de corriente contínua (DCP). Un plasma de corriente contínua se crea por una descarga eléctrica entre dos electrodos. Es necesario un gas de apoyo al plasma, y el más común es el argón. Las muestras pueden ser depositadas en uno de los electrodos.

* Espectrometría de emisión óptica por descarga luminiscente (GD-OES)



* Espectrometría de emisión plasma-atómica acoplada inductivamente (ICP-AES)

* Espectrometría de ruptura inducida por láser (LIBS), también llamada espectrometría de plasma inducida por láser (LABIOS)

* Espectrometría de plasma inducida por microondas(MIP)

ESPECTROMETRÍA DE CHISPA O ARCO


Se usa para el análisis de elementos metálicos en muestras sólidas. Para materiales no conductores, se usa polvo de grafito para hacer conductora la muestra. En los métodos de espectroscopia de arco tradicionales se usa una muestra sólida que es destruida durante el análisis. Un arco eléctrico o chispa se pasan por la muestra, calentándola a alta temperatura para excitar los átomos. Los átomos de analito excitado emiten luz en varias longitudes de onda que pueden ser detectadas mediante métodos espectroscópicos comunes. Ya que las condiciones que producen la emisión por arco no son controladas cuantitativamente, el análisis de los elementos es cualitativo. Hoy día, las fuentes de chispa con descargas controladas bajo una atmósfera de argón permiten que este método pueda ser considerado eminentemente cuantitativo, y su uso está muy extendido en los laboratorios de control de producción de fundiciones y acerías.

ESPECTROMETRÍA VISIBLE


Muchos átomos emiten o absorben la luz visible. A fin de obtener un espectro lineal fino, los átomos deben estar en fase gaseosa. Esto significa que la sustancia tiene que ser vaporizada. El espectro se estudia en absorción o emisión. La espectroscopia de absorción visible a menudo se combina con la de absorción ultravioleta (espectroscopia UV/Vis). Aunque esta forma pueda ser poco común al ser el ojo humano un indicador similar, todavía se muestra útil para distinguir colores.

ESPECTROMETRÍA ULTRAVIOLETA


Todos los átomos absorben en la región ultravioleta (UV) ya que estos fotones son bastante energéticos para excitar a los electrones externos. Si la frecuencia es lo bastante alta, se produce la fotoionización. La espectrometría UV también se usa para la cuantificación de proteínas y concentración de ADN, así como para la proporción de proteínas y ADN en una solución. En las proteínas se encuentran generalmente varios aminoácidos, como el triptófano, que absorben la luz en el rango de 280nm. El ADN absorbe la luz en el rango de 260nm. Por esta razón, la proporción de absorbancia 260/280nm es un buen indicador general de la pureza relativa de una solución en términos de estas dos macromoléculas. También pueden hacerse estimaciones razonables de la concentración de ADN o proteínas aplicando la ley de Beer.



ESPECTROMETRÍA INFRARROJA


La espectrometría infrarroja ofrece la posibilidad de medir tipos diferentes de vibraciones en los enlaces atómicos a frecuencias diferentes. En química orgánica, el análisis de los espectros de absorción infrarroja indica qué tipo de enlaces están presentes en la muestra.

ESPECTROMETRÍA RAMAN


La espectrometría Raman usa la dispersión inelástica de la luz para analizar modos vibracionales y rotatorios de las moléculas. Las "huellas digitales" que resultan son una ayuda para el análisis.

ESPECTROMETRÍA DE RESONANCIA MAGNÉTICA NUCLEAR (RMN)


La espectrometría de resonancia magnética nuclear analiza las propiedades magnéticas de ciertos núcleos atómicos para determinar diferentes ambientes locales electrónicos del hidrógeno, carbono, u otros átomos en un compuesto orgánico u otro compuesto. Se usa para determinar la estructura del compuesto.

ESPECTROMETRÍA DE FOTOEMISIÓN


La fotoemisión puede referirse a:
* Emisión de electrones a partir de la materia después de la absorción de fotones energéticos (efecto fotoeléctrico).
* Emisión de fotones a partir de los semiconductores y metales cuando los electrones que fluyen en el material pierden energía mediante deceleración o recombinación.

ESPECTROMETRÍA MÖSSBAUER




La espectrometría de transmisión o conversión electrónica (CEMS) de Mössbauer prueba las propiedades de los núcleos de isótopos específicos en ambientes atómicos diferentes, analizando la absorción resonante de rayos gamma de energía característica, lo que se conoce como efecto de Mössbauer.

OTROS TIPOS DE ESPECTROMETRÍA


* Fotoacústica. Mide las ondas sonoras producidas por la absorción de radiación.
* Fototermal. Mide el calor desarrollado por la absorción de radiación.
* De dicroismo circular.
* De actividad óptica Raman. Usa los efectos de la actividad óptica y la dispersión para revelar información detallada sobre los centros quirales de las moléculas.
* De terahertzios. Usa longitudes de onda por encima de la espectrometría infrarroja y por debajo de las microondas o medidas de onda milimétricas.
* De dispersión inelástica de neutrones, como la espectroscopia Raman pero con neutrones en vez de fotones.
* De túnel de electrones inelásticos. Usa los cambios de corriente debidos a la interacción de vibraciones electrónicas inelásticas a energías específicas que también pueden medir transiciones ópticamente prohibidas.
* Auger. Se usa para estudiar superficies de materiales a microescala. A menudo se usa en relación con la microscopía de electrones.
* De cavidad en anillo.
* De transformación de Fourier. La transformación Fourier es un método eficiente para tratar datos de espectros obtenidos usando interferómetros. Casi toda la espectrometría infrarroja (FTIR) y la resonancia magnética nuclear (RMN) se realizan con la transformación de Fourier.
* De tiempo resuelto. Se usa en situaciones donde las propiedades cambian con el tiempo.
* Mecánica. Implica interacciones con vibraciones macroscópicas, como los fotones. Un ejemplo es la espectrometría acústica, que implica ondas sonoras.
* De fuerza. Usa una técnica analítica basada en AFM.
* Dieléctrica.
* Infrarroja termal. Mide la radiación termal emitida por materiales y superficies, y se usa para determinar el tipo de enlaces presentes en una muestra, así como su ambiente reticular. Estas técnicas son muy usadas por los químicos orgánicos, mineralogistas y geólogos.