Contenidos

Espectrometría de emisión


La espectrometría de emisión es una técnica espectroscópica que analiza las longitudes de onda de los fotones emitidos por los átomos o moléculas durante su transición desde un estado excitado a un estado de inferior energía. Cada elemento emite un conjunto característico de longitudes de onda discretas en función de su estructura electrónica. Mediante la observación de estas longitudes de onda puede determinarse la composición elemental de la muestra. La espectrometría de emisión se desarrolló a finales del siglo 19, y los esfuerzos teóricos para explicar los espectros de emisión atómica condujeron a la mecánica cuántica.

Hay muchas maneras en que los átomos pueden ser llevados a un estado excitado. El método más simple es calentar la muestra a una temperatura alta, produciéndose las excitaciones debido a las colisiones entre átomos de la muestra. Este método se utiliza en la espectrometría de emisión de llama, y fue también el método utilizado por Anders Jonas Ångström cuando descubrió el fenómeno de las líneas de emisión discretas en 1850.

A pesar de que las líneas de emisión están causadas por una transición entre estados energéticos cuantizados, y pueden ser muy agudas a primera vista, tienen una anchura finita; es decir, se componen de más de una longitud de onda de luz. Esta ampliación de la línea espectral tiene muchas causas diferentes.

Las líneas de emisión en los gases calientes fueron descubiertas por Ångström, y la técnica fue desarrollada por David Alter, Gustav Kirchhoff y Robert Bunsen.

La espectrometría de emisión suele llamarse a menudo espectrometría de emisión óptica, debido a la naturaleza de la luz que se emite.

TÉCNICA EXPERIMENTAL EN LA ESPECTROMETRÍA DE EMISIÓN POR LLAMA


La solución que contiene la sustancia que va a ser analizada se conduce al quemador y se dispersa en la llama como un spray fino. El solvente se evapora en primer lugar, dejando partículas sólidas finamente divididas que se desplazan a la región más caliente de la llama, donde se producen átomos e iones gaseosos. Los electrones son entonces excitados, tal como se describió más arriba. Es común usar un monocromador para permitir una detección fácil.

En un nivel simple, la espectrometría de emisión por llama se puede observar utilizando sólo un mechero Bunsen y muestras de metales. Por ejemplo, el metal sodio colocado en la llama se iluminará de amarillo, el metal calcio de rojo y el cobre creará una llama verde.



Hay cuatro etapas principales durante la espectrometría de emisión por llama:

1. Evaporación: La muestra que contiene partículas metálicas se deshidrata por el calor de la llama, y el disolvente se evapora.

2. Atomización: En esta etapa, los iones metálicos que se encontraban en el disolvente se reducen a átomos de metal. Por ejemplo, Mg2 + (aq) + 2e → Mg (g). Los electrones en los átomos de metal absorben la energía del calor de la llama y pasan a niveles más altos de energía.

3. Excitación: Los electrones en estado basal de los átomos de metal son ahora capaces de absorber la energía del calor de la llama. El cuanto (cantidad) de energía absorbido depende de las fuerzas electrostáticas de atracción entre los electrones con carga negativa y el núcleo de carga positiva. Esto, a su vez, depende del número de protones en el núcleo. Como los electrones absorben energía, se desplazan a niveles más altos de la energía y pasan a estado excitado.

4. Emisión de radiación: Los electrones en estado excitado son muy inestables y se mueven hacia un estado basal con bastante rapidez. Cuando lo hacen, emiten la energía que absorbieron. Para algunos metales, esta radiación corresponde a longitudes de onda de luz en la región visible del espectro electromagnético, y se observan como un color característico del metal. Como los electrones de diferentes niveles de energía son capaces de absorber luz, el color de la llama será una mezcla de todas las diferentes longitudes de onda emitidas por los distintos electrones en el átomo de metal que se investiga.